SMM J2135-0102 (The Cosmic Eyelash A & B)
Finally, I have my two custom galaxies, The Cosmic Eyelash A & B, named so because of the view we have from earth, both colliding and interacting edge on, and both galactic bulges visibly separated. (I'm still not sure if this is instead just one galaxy that gravitational lensing has separated into two views). These two brilliant, yet middle aged starburst galaxies are still somehow holding onto and are surrounded by turbulent reservoirs of hydrogen gas, converting vast quantities into new stars at a furious pace!
This ALMA image shows the Cosmic Eyelash, that appears double and brightened by gravitational lensing. ALMA has been used to detect turbulent reservoirs of cold gas surrounding this and other distant starburst galaxies. By detecting CH+ for the first time in the distant Universe, this research opens up a new window of exploration into a critical epoch of star formation.
Cosmic Eyelash reveals new information on star formation
They were uncovered by the discovery of extensive regions of carbon hydride (CH+) molecules in and around them. CH+ is an ion of the CH molecule and it is used to trace highly turbulent regions in other galaxies that are teeming with hydrogen gas. CH+ is a special molecule, it needs a lot of energy to form and is very reactive, which means its lifetime is very short and it can’t be transported far. CH+ therefore traces how energy flows in the galaxies and their surroundings.
The observed CH+ reveals dense shock waves, powered by hot, fast galactic winds originating inside the galaxies’ star-forming regions. These winds flow through a galaxy and push material out of it. Their turbulent motions are such that the galaxy’s gravitational pull can recapture part of that material. This material then gathers into turbulent reservoirs of cool, low-density gas, extending more than 30,000 light-years from the galaxy’s star-forming regions closer to the center.
With CH+, energy is stored within vast galaxy-sized winds and end up as turbulent motions in previously unseen reservoirs of cold gas surrounding the galaxy. By driving turbulence in the reservoirs, these galactic winds extend the starburst phase instead of quenching it. In the case of these older galaxies, galactic winds alone could not replenish any newly revealed gaseous reservoirs. Here the mass is provided by the galactic merger and accretion from other hidden streams of gas. This is a step forward in our understanding of how the inflow of material is regulated around the most intense starburst galaxies of the early universe.
[youtube]4KytNHz30AY[/youtube]
European Southern Observatory (ESO) on Aug 30, 2017
This zoom sequence starts from a broad view of the sky and takes the viewer deep into the constellation of Aquarius (The Water Bearer). We pass the globular star cluster Messier 2 and go far beyond the galaxy into a distant cluster of galaxies. There we see a curious arc, a gravitationally lensed version of an even more distant galaxy, nicknamed the Cosmic Eyelash, seen using Atacama Large Millimeter/submillimeter Array
ALMA (ESO/NAOJ/NRAO), Digitized Sky Survey 2, ESA/Hubble. Music: Astral Electronic
Zooming in on the Cosmic Eyelash
ESO Public Videos
ESO Public MP4 of ESO1727a
Now it is possible for you to explore The Cosmic Eyelash with this addon for Space Engine! If you start your journey heading towards the younger merging galaxies from the starting point of Sol you will pass fairly close to a star cluster. You also pass the M2 globular star cluster and Aquarius Dwarf Galaxy. While there is no noticeable gravitational lensing in SE at this distance, apparently something magnifies our real life observational view and increases the already incredibly bright object by over 100 times! As you get closer to it you will notice the intense brightness, compared to other local galaxies. In SE you can start to see it around 2Glyrs away. (I cut the simulated distance down to 7% the actual distance from 9,710,599,812 to 710,599,812 parsecs and it is near the edge of the SE universe)
What is really fascinating are the kilopascal sized starburst clumps (hopefully noticeable with by custom textures), much different from the local nuclear starburstings we see in less active galaxies. You will easily notice the higher density of stars, specifically younger Blue stars and numerous nebulae when flying though my custom galaxy. Also very common are Red Giants and Black Hole binary stars.
Gravitational lensing has played a critical role because the spatial enhancement associated with magnification provides a way to investigate the internal structure of distant, faint galaxies to levels unattainable with the current generation of instrumentation for typical dusty star-forming galaxies.
Detailed Studies of Individual Dusty Star-forming Galaxies
This mod is for the 0.9.8.0 beta version of Space Engine.
The Cosmic Eyelash.pak
Location
A
RA 21 32 36.73 (21.543538)
Dec -1 16 20.04 (-1.272238)
Axis 164.414 0.0218099 -0.9860151 -0.1652222
Quat -0.3918541 -0.3656957 -0.6836142 -0.3962547
Distance 710599812
B
RA 21 32 36.99 (21.543610)
Dec -01 16 17.90 (-1.271640)
Axis 159.2975 -0.02165486 -0.9906428 -0.1347515
Quat -0.4678879 -0.3751654 -0.7219971 -.03450392
Distance 710595812 // ( 4000 parsec closer to Sol )
HBD Dad